Expression of the Kdp ATPase is consistent with regulation by turgor pressure.
نویسندگان
چکیده
The kdpFABC operon of Escherichia coli encodes the four protein subunits of the Kdp K+ transport system. Kdp is expressed when growth is limited by the availability of K+. Expression of Kdp is dependent on the products of the adjacent kdpDE operon, which encodes a pair of two-component regulators. Studies with kdp-lac fusions led to the suggestion that change in turgor pressure acts as the signal to express Kdp (L. A. Laimins, D. B. Rhoads, and W. Epstein, Proc. Natl. Acad. Sci. USA 78:464-468, 1981). More recently, effects of compatible solutes, among others, have been interpreted as inconsistent with the turgor model (H. Asha and J. Gowrishankar, J. Bacteriol. 175:4528-4537, 1993). We re-examined the effects of compatible solutes and of medium pH on expression of Kdp in studies in which growth rate was also measured. In all cases, Kdp expression correlated with the K+ concentration when growth began to slow. Making the reasonable but currently untestable assumptions that the reduction in growth rate by K+ limitation is due to a reduction in turgor and that addition of betaine does not increase turgor, we concluded that all of the data on Kdp expression are consistent with control by turgor pressure.
منابع مشابه
Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control.
Kdp, an inducible high-affinity K+ transporter in Escherichia coli, is encoded by genes of the kdpABC operon, and its expression is regulated by the products of kdpD and kdpE. Loss of cell turgor has been proposed to be the signal which induces kdp expression (L. A. Laimins, D. B. Rhoads, and W. Epstein, Proc. Natl. Acad. Sci. USA 78:464-468, 1981). We reexamined kdp expression during steady-st...
متن کاملKdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators.
The Kdp system of Escherichia coli, a transport ATPase with high affinity for potassium, is expressed when turgor pressure is low. Expression requires KdpD, a 99-kDa membrane protein, and KdpE, a 25-kDa soluble cytoplasmic protein. The sequences of KdpD and KdpE show they are members of the sensor-effector class of regulatory proteins: the C-terminal half of KdpD is homologous to sensors such a...
متن کاملUp-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress
Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...
متن کاملHeavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis
The present study was conducted to find the effect of three heavy metals, Ag, Hg and Pb on the expression level of a gene encoding plasma membrane H+-ATPase in Aeluropus littoralis. The experiment was laid out in a completely random design with three replications. The expression of the main gene was normalized to the expression of the housekeeping gene actin. Two 259 and 187 bp fragments were a...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 19 شماره
صفحات -
تاریخ انتشار 1998